Axonal Noise as a Source of Synaptic Variability
نویسندگان
چکیده
Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation.
منابع مشابه
P152: Neurotoxicants and Mechanisms Neurodegenerative in Acrylamide
Many chemicals with broad industrial, pharmaceutical and agricultural application produce a neurotoxic syndrome in humans and experimental animals involving weight loss, skeletal muscle weakness and ataxia. Neurotoxicity is defined as a structural change or a functional alteration of the nervous system resulting from exposure to a chemical, biological or physical agent. Neurotoxicity including ...
متن کاملSynaptic noise as a source of variability in the interval between action potentials.
The source of variability in the interval between action potentials has been identified in a class of cat spinal motoneurons. The observed random fluctuations in membrane potential (synaptic noise) together with an empirical description of spike generation accurately predict the statistical structure of variability observed to occur in the neuron's discharge.
متن کاملMotile axonal mitochondria contribute to the variability of presynaptic strength.
One of the most notable characteristics of synaptic transmission is the wide variation in synaptic strength in response to identical stimulation. In hippocampal neurons, approximately one-third of axonal mitochondria are highly motile, and some dynamically pass through presynaptic boutons. This raises a fundamental question: can motile mitochondria contribute to the pulse-to-pulse variability o...
متن کاملIndependent sources of quantal variability at single glutamatergic synapses.
Variability in the size of single postsynaptic responses is a feature of most central neurons, although the source of this variability is not completely understood. The dominant source of variability could be either intersynaptic or intrasynaptic. To quantitatively examine this question, a biophysically realistic model of an idealized central axospinous synapse was used to assess mechanisms und...
متن کاملVariability in the Structure of an Identified Interneurone in Isogenic Clones of Locusts
Several studies have shown that there can be considerable variability in the morphology of identified neurones. In a recent investigation (Pearson & Goodman, 1979) a great degree of variability was observed in the axon branching patterns of the descending contralateral movement detector (DCMD) interneurones of locusts. Corresponding to the variation in the structure of DCMD was a large variatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014